วันเสาร์ที่ 22 สิงหาคม พ.ศ. 2552

ระบบเครือข่ายไร้สาย (4122102)

1. ระบบเครือข่ายไร้สาย คืออะไร อธิบายภาพโดยรวมระบบเครือข่ายไร้สายระบบเครือข่ายไร้สาย
(Wireless LAN : WLAN) หมายถึง เทคโนโลยีที่ช่วยให้การติดต่อสื่อสารระหว่างเครื่องคอมพิวเตอร์ 2 เครื่อง หรือกลุ่มของเครื่องคอมพิวเตอร์สามารถสื่อสารกันได้ ร่วมถึงการติดต่อสื่อสารระหว่างเครื่องคอมพิวเตอร์กับอุปกรณ์เครือข่ายคอมพิวเตอร์ด้วยเช่นกัน โดยปราศจากการใช้สายสัญญาณในการเชื่อมต่อ แต่จะใช้คลื่นวิทยุเป็นช่องทางการสื่อสารแทน การรับส่งข้อมูลระหว่างกันจะผ่านอากาศ ทำให้ไม่ต้องเดินสายสัญญาณ และติดตั้งใช้งานได้สะดวกขึ้นระบบเครือข่ายไร้สายใช้แม่เหล็กไฟฟ้าผ่านอากาศ เพื่อรับส่งข้อมูลข่าวสารระหว่างเครื่องคอมพิวเตอร์ และระหว่างเครื่องคอมพิวเตอร์กับอุปกรณ์เครือข่าย โดยคลื่นแม่เหล็กไฟฟ้านี้อาจเป็นคลื่นวิทย (Radio) หรืออินฟาเรด (Infrared) ก็ได้ การสื่อสารผ่านเครือข่ายไร้สายมีมาตราฐาน IEEE802.11 เป็นมาตราฐานกำหนดรูปแบบการสื่อสาร ซึ่งมาตราฐานแต่ละตัวจะบอกถึงความเร็วและคลื่นความถี่สัญญาณที่แตกต่างกันในการสื่อสารข้อมูล เช่น 802.11b และ 802.11g ที่ความเร็ว 11 Mbps และ 54 Mbps ตามลำดับ สามารถศึกษารายละเอียดเพิ่มเติมศึกษาได้จาก มาตราฐาน IEEE802.11 และขอบเขตของสัญญาณคลอบคุลพื้นที่ประมาณ 100 เมตร ในพื้นที่โปรง และประมาณ 30 เมตร ในอาคาร ซึ่งระยะทางของสัญญาณมีผลกระทบจากสิ่งรอบข้างหลายๆ อย่าง เช่น โทรศัพท์มือถือ ความหนาของกำแพง เครื่องใช้ไฟฟ้า อุปกรณ์อิเล็กทรอนิคส์ต่างๆ รวมถึงร่างกายมนุษย์ด้วยเช่นกัน สิ่งเหล่านี้มีผลกระทบต่อการใช้งานเครือข่ายไร้สายทั้งสิ้น การเชื่อมต่อเครือข่ายไร้สายมี 2 รูปแบบ คือแบบ Ad-Hoc และ Infrastructure รายละเอียดเพิ่มเติมศึกษาได้จาก รูปแบบเครือข่ายไร้สาย การใช้งานเครือข่ายไร้สายของผู้ใช้บริการทั่วไปจะเป็นแบบ Infrastructure คือมีอุปกรณ์กระจายสัญญาณ (Access Point) ของผู้ให้บริการเป็นผู้ติดตั้งและกระจายสัญญาณ ให้ผู้ใช้ทำการเชื่อมต่อ โดยผู้ใช้บริการจะต้องมีอุปกรณ์รับส่งสัญญาณขอเรียกว่า "การ์ดแลนไร้สาย" เป็นอุปกรณ์รับส่งสัญญาณ ทำหน้าที่รับส่งสัญญาณจากเครื่องคอมพิวเตอร์ผู้ใช้ไป Access Point ของผู้ให้บริการ สรุปการเชื่อมต่อเครือข่ายไร้สายเป็นการเชื่อมต่อเครือข่ายของเครื่องคอมพิวเตอร์เข้าสู่ระบบเครือข่าย เหมือนกับระบบแลน (LAN) มีสายปกติ แตกต่างที่อุปกรณ์ทางกายภาพในการเชื่อมต่อเครือข่ายไม่ต้องใช้สายสัญญาณแต่อย่างใด โดยการใช้งานเครือข่ายไร้สายสามารถใช้บริการต่างๆ บนเครือข่ายอินเทอร์เน็ตได้เหมือนเครือข่ายมีสายได้ปกติ เว้นแต่ว่าผู้ดูแลระบบเครือข่ายนั้นๆ จะปิดบริการบางบริการเพื่อความปลอดภัยของเครือข่ายได้เช่นกัน ซึ่งการเชื่อมต่อเครือข่ายไร้สายช่วยให้การเชื่อมต่อง่ายขึ้น ประหยัดค่าสายสัญญาณ และใช้งานได้ทุกที่ที่สัญญาณเครือข่ายไร้สายไปถึง...
2. จงอธิบายรายละเอียดของมาตรฐาน IEEE802.11g
• มาตรฐาน IEEE802.11g มาตรฐานนี้เป็นมาตรฐานใหม่ที่ความถี่ 2.4 GHz โดยสามารถรับส่งข้อมูลที่ความเร็ว 36 -54 Mbps ซึ่งเป็นความเร็วที่สูงกว่ามาตรฐาน 802.11b ซึ่ง 802.11g สามารถปรับระดับความเร็วในการสื่อสารลงเหลือ 2 Mbps ได้ (ตามสภาพแวดล้อมของเครือข่ายที่ใช้งาน) มาตราฐานนี้เป็นที่ยอมรับจากผู้ใช้เป็นจำนวนมากและกำลังจะเข้ามาแทนที่ 802.11b ในอนาคตอันใกล้ นอกจากที่กล่าวมาข้างต้นนี้มีบางผลิตภัณฑ์ใช้เทคโนโลยีเฉพาะตัวเข้ามาเสริมทำให้ความเร็วเพิ่มขึ้นจาก 54 Mbps เป็น 108 Mbps แต่ต้องทำงานร่วมกันเฉพาะอุปกรณ์ที่ผลิตจากบริษัทเดียวกันเท่านั้น ซึ่งความสามารถนี้เกิดจากชิป (Chip) กระจายสัญญาณของตัวอุปกรณ์ที่ผู้ผลิตบางรายสามารถเพิ่มประสิทธิภาพการรับส่งสัญญาณเป็น 2 เท่าของการรับส่งสัญญาณได้ แต่ปัญหาของการกระจายสัญญาณนี้จะมีผลทำให้อุปกรณ์ไร้สายในมาตราฐาน 802.11b มีประสิทธิภาพลดลงด้วยเช่นกัน ด้านล่างเป็นตารางมาตราฐาน IEEE802.11 ของเครือข่ายไร้สาย
3. จงเปรียบเทียบเครือข่ายไร้สายมาตรฐาน IEEE802.11a และ IEEE802.11b
มาตราฐาน IEEE802.11Institute of Electrical and Electronics Engineers (IEEE) เป็นสถาบันที่กำหนดมาตรฐานการทำงานของระบบเครือข่ายคอมพิวเตอร์ ได้กำหนดมาตรฐานสำหรับเครือข่ายไร้สายขึ้น คือมาตรฐาน IEEE802.11a, b, และ g ตามลำดับขึ้น ซึ่งแต่ละมาตราฐานมีความเร็วและคลื่นความถี่สัญญาณที่แตกต่างกันในการสื่อสารข้อมูล มีรายละเอียดดังนี้
• มาตราฐาน IEEE802.11a เป็นมาตรฐานระบบเครือข่ายไร้สายที่มีประสิทธิภาพสูง ทำงานที่ย่านความถี่ 5 GHz มีความเร็วในการรับส่งข้อมูลที่ 54 Mbps ที่ความเร็วนี้สามารถทำการแพร่ภาพและข่าวสารที่ต้องการความละเอียดสูงได้ อัตราความเร็วในการรับส่งข้อมูลสามารถปรับระดับให้ช้าลงได้ เพื่อเพิ่มระยะทางการเชื่อมต่อให้มากขึ้น เช่น 54, 48, 36, 24 และ 11 เมกกะบิตเป็นต้น ในขณะที่คลื่นความถี่ 5 GHz นี้ยังไม่ได้ใช้งานอย่างแพร่หลาย ดังนั้นปัญหาการรบกวนคลื่นความถี่จึงมีน้อย ต่างจากคลื่นความถี่ 2.4 GHz ที่มีการใช้งานอย่างแพร่หลายทำให้สัญญาณของคลื่นความถี่ 2.4 GHz ถูกรบกวนจากอุปกรณ์ประเภทอื่นที่ใช้คลื่นความถี่เดียวกันได้ ระยะทางการเชื่อมต่อประมาณ 300 ฟิตจากจุดกระจายสัญญาณ Access Point หากเทียบกับมาตรฐาน 802.11b แล้ว ระยะทางจะได้น้อยกว่า 802.11b ที่คลื่นความถี่ต่ำกว่า และทั้ง 2 มาตรฐานนี้ไม่สามารถทำงานร่วมกันได้ ขณะที่ประเทศไทยไม่อนุญาตให้ใช้คลื่นความถี่ 5 GHz จึงไม่เห็นอุปกรณ์ WLAN มาตรฐาน 802.11a จำหน่ายในประเทศไทย แต่ความเร็ว 54 Mbps สามารถใช้งานได้ที่มาตรฐาน 802.11b ที่จะกล่าวถึงต่อไป
• มาตรฐาน IEEE802.11b 802.11b เป็นมาตราฐานที่ได้รับความนิยมอย่างแพร่หลายทั้งต่างประเทศและในประเทศไทย เป็นมาตรฐาน WLAN ที่ทำงานที่คลื่นความถี่ 2.4 GHz (คลื่นความถี่นี้สามารถใช้งานในประเทศไทยได้) มีความสามารถในการรับส่งข้อมูลที่ความเร็ว 11 Mbps ปัจจุบันผลิตภัณฑ์อุปกรณ์เครือข่ายไร้สายภายใต้มาตราฐานนี้ถูกผลิตออกมาเป็นจำนวนมาก และที่สำคัญแต่ละผลิตภัณฑ์มีความสามารถทำงานร่วมกันได้ อุปกรณ์ของผู้ผลิตทุกยี่ห้อต้องผ่านการตรวจสอบจากสถาบัน Wi-Fi Alliance เพื่อตรวจสอบมาตรฐานของอุปกรณ์และความเข้ากันได้ของแต่ละผู้ผลิต ปัจจุบันนี้นิยมนำอุปกรณ์ WLAN ที่มาตรฐาน 802.11b ไปใช้ในองค์กรธุรกิจ สถาบันการศึกษา สถานที่สาธารณะ และกำลังแพร่เข้าสู่สถานที่พักอาศัยมากขึ้น มาตรฐานนี้มีระบบเข้ารหัสข้อมูลแบบ WEP ที่ 128 บิต
4. ISM band คืออะไร จงอธิบาย
ISM ย่อมาจาก Industrial Sciences Medicine หรือคลื่นความถี่สาธารณะสำหรับอุตสาหกรรม วิทยาศาสตร์ และการแพทย์ โดยย่านความถี่สำหรับคลื่นวิทยุในโลกนี้ จัดได้ว่ามีการควบคุมการเป็นเจ้าของหรือใช้งาน ซึ่งงานวิจัยสำหรับการขอคลื่นความถี่มาใช้งานทำได้ค่อนข้างยาก จึงมีการตั้ง ISM band นี้ขึ้นมาสำหรับการวิจัยโดยเฉพาะ โดยแบ่งเป็นสามย่านความถี่ คือ 900 เมกะเฮิรตซ์, 2.4 กิกะเฮิรตซ์ และ 5.7 กิกะเฮิรตซ์ สำหรับ Wireless Network 802.11 จะใช้สองย่านความถี่หลัง แต่เนื่องจากความถี่ 5.7 กิกะเฮิรตซ์ นั้น มีการยอมให้ใช้ได้เฉพาะบางประเทศเท่านั้น (ส่วนที่เหลืออาจจะถูกจัดสรรไปให้กับองค์กรต่างๆ ก่อนจะมีการประกาศ ISM Band ออกมา) ทำให้มาตรฐาน a ไม่สามารถใช้งานได้ในประเทศบางประเทศ รวมถึงประเทศไทยด้วย เราจึงใช้งานได้เฉพาะ 802.11b และ g เท่านั้น (การพัฒนามาตรฐาน g ก็มาจากเหตุผลนี้เช่นกัน)
5. Architecture (Topology โทโพโลยี) ของ WLAN มีอะไรบ้างอธิบาย
ประเภทการเชื่อมต่อ
การเชื่อมระบบ WLAN มักจะเชื่อมกันกันในบริเวณใกล้ๆ หรือ อาคารเดียวกันมีการเชื่อมอยู่ 5 ประเภท
1. Peer-to-peer (ad hoc mode)Peer to Peer เป็นลักษณะ การเชื่อมต่อแบบโครงข่ายโดยตรงระหว่างคอมพิวเตอร์ 2 เครื่องหรือมากกว่านั้น เป็นการใช้งานร่วมกันของ wireless adapter cards โดยไม่ได้มีการเชื่อมต่อกับเครือข่ายแบบใช้สายเลย
2. Client/server (Infrastructure mode)ระบบเครือข่ายไร้สายแบบ Client / server หรือ Infrastructure mode เป็นลักษณะการรับส่งข้อมูลโดยอาศัย Access Point (AP) หรือเรียกว่า “Hot spot” ทำหน้าที่เป็นสะพานเชื่อมต่อระหว่างระบบเครือข่ายแบบใช้สายกับเครื่องคอมพิวเตอร์ลูกข่าย (client) โดยจะกระจายสัญญาณคลื่นวิทยุเพื่อ รับ-ส่งข้อมูลเป็นรัศมีโดยรอบ เครื่องคอมพิวเตอร์ที่อยู่ในรัศมีของ AP จะกลายเป็น เครือข่ายกลุ่มเดียวกันทันที โดยเครื่องคอมพิวเตอร์ จะสามารถติดต่อกัน หรือติดต่อกับ Server เพื่อแลกเปลี่ยนและค้นหาข้อมูลได้ โดยต้องติดต่อผ่านAP เท่านั้น ซึ่ง AP 1 จุด สามารถให้บริการเครื่องลูกข่ายได้ถึง 15-50 อุปกรณ์ ของเครื่องลูกข่าย
3. Multiple access points and roamingการเชื่อมต่อสัญญาณระหว่างเครื่องคอมพิวเตอร์ กับ Access Point ของเครือข่ายไร้สายจะอยู่ในรัศมีประมาณ 500 ฟุต ภายในอาคาร และ 1000 ฟุต ภายนอกอาคาร หากสถานที่ที่ติดตั้งมีขนาดกว้าง มากๆ เช่นคลังสินค้า บริเวณภายในมหาวิทยาลัย สนามบิน จะต้องมีการเพิ่มจุดการติดตั้ง AP ให้มากขึ้น เพื่อให้การรับส่งสัญญาณในบริเวณของเครือข่ายขนาดใหญ่ เป็นไปอย่างครอบคลุมทั่วถึง
4. Use of an Extension Point กรณีที่โครงสร้างของสถานที่ติดตั้งเครือข่ายแบบไร้สายมีปัญหาผู้ออกแบบระบบอาจจะใช้ Extension Points ที่มีคุณสมบัติเหมือนกับ Access Point แต่ไม่ต้องผูกติดไว้กับเครือข่ายไร้สาย
5. The Use of Directional Antennasระบบแลนไร้สายแบบนี้เป็นแบบใช้เสาอากาศในการรับส่งสัญญาณระหว่างอาคารที่อยู่ห่างกัน โดยการติดตั้งเสาอากาศที่แต่ละอาคาร เพื่อส่งและรับสัญญาณระหว่างกัน

6. จงอธิบายความหมายของ BSS , ESS , Access point ถึงหน้าที่และส่วนที่เกี่ยวข้อง
1. Basic Service Set (BSS)Basic Service Set (BSS) หมายถึงบริเวณของเครือข่าย IEEE 802.11 WLAN ที่มีสถานีแม่ข่าย 1 สถานี ซึ่งสถานีผู้ใช้ภายในขอบเขตของ BSS นี้ทุกสถานีจะต้องสื่อสารข้อมูลผ่านสถานีแม่ข่ายดังกล่าวเท่านั้น
2. Extended Service Set (ESS)Extended Service Set (ESS) หมายถึงบริเวณของเครือข่าย IEEE 802.11 WLAN ที่ประกอบด้วย BSS มากกว่า 1 BSS ซึ่งได้รับการเชื่อมต่อเข้าด้วยกัน สถานีผู้ใช้สามารถเคลื่อนย้ายจาก BSS หนึ่งไปอยู่ในอีก BSS หนึ่งได้โดย BSS เหล่านี้จะทำการ Roaming หรือติดต่อสื่อสารกันเพื่อทำการโอนย้ายการให้บริการสำหรับสถานีผู้ใช้ดังกล่าว
3. Access point คืออุปกรณ์ที่ทำหน้าที่คล้ายคลึงกับ switching hub ของระบบเครือข่ายปกติ โดย Access Point ทำหน้าที่รับส่งข้อมูลทางคลื่นความถี่กับ Wireless Card ซึ่งติดตั้งบนเครื่องของผู้ใช้แต่ละคน

ROUTER (เครือข่ายคอมพิวเตอร์ฯ 4122102)

1. Router คืออะไร
ความหมายของ Router อุปกรณ์ที่ทำหน้าที่เชื่อมต่อระบบเครือข่ายหลายระบบเข้าด้วยกัน คล้ายกับบริดจ์ แต่มีส่วนการ ทำงานที่ซับซ้อนมากกว่าบริดจ์มากโดยเราท์เตอร์จะมีเส้นทางการเชื่อมโยงระหว่าง แต่ละเครือข่ายเก็บไว้เป็นตารางเส้นทาง เรียกว่า Routing Table ทำให้เราท์เตอร์สามารถทำหน้าที่จัดหาเส้นทาง และเลือกเส้นทางที่เหมาะสมที่สุดในการเดินทาง เพื่อการติดต่อระหว่างเครือข่ายได้อย่างมีประสิทธิภาพ
2. อธิบายการทำงานของ Router
การทำงานของ RouterRouter หน้าที่หลักของคือ การอ้างอิงไอพีแอดเดรสระหว่างเครื่องลูกข่ายที่อยู่กันคนละเครือข่าย รวมที่ทั้งการเลือกและจัดเส้นทางที่ดีที่สุด เพื่อนำข้อมูลข่าวสาร ในรูปแบบของแพ็กเกจจากเครื่องลูกข่ายต้นทางบนเครือข่ายที่ตนดูแลอยู่ไปยังเครื่องลูกข่ายที่อยู่กันคนละเครือข่ายหน้าที่ของเราเตอร์คือ จัดแบ่งเครือข่ายและเลือกเส้นทางที่เหมาะสมเพื่อนำส่งแพ็กเก็ต เราเตอร์จะป้องกันการบรอดคาสต์แพ็กเก็ตจากเครือข่ายหนึ่งไม่ให้ข้ามมายังอีกเครือข่ายหนึ่ง เมื่อเราเตอร์รับข้อมูลเป็นแพ็กเก็ตเข้ามาตรวจสอบแอดเดรสปลายทางแล้ว จากนั้นนำมาเปรียบเทียบกับตารางเส้นทางที่ได้รับการโปรแกรมไว้ เพื่อหาเส้นทางที่ส่งต่อ หากเส้นทาง ที่ส่งมาจากอีเทอร์เน็ต และส่งต่อออกช่องทางของ Port WAN ที่เป็นแบบจุดไปจุดก็จะมีการปรับปรุงรูปแบบสัญญาณให้เข้ากับมาตรฐานใหม่ เพื่อส่งไปยังเครือข่าย WAN ได้
3. Routing Protocol คืออะไร
Routing Protocol : โปรโตคอลเลือกเส้นทางRouting Protocol คือโพรโทคอลที่ใช้ในการแลกเปลี่ยน routing table ระหว่างอุปกรณ์เครือข่ายต่างๆที่ทำงานในระดับ Network Layer (Layer 3) เช่น Router เพื่อให้อุปกรณ์เหล่านี้สามารถส่งข้อมูล (IP packet) ไปยังคอมพิวเตอร์ปลายทางได้อย่างถูกต้อง โดยที่ผู้ดูแลเครือข่ายไม่ต้องแก้ไขข้อมูล routing table ของอุปกรณ์ต่างๆตลอดเวลา เรียกว่าการทำงานของ Routing Protocol ทำให้เกิดการใช้งาน dynamic routing ต่อระบบเครือข่าย
4. อธิบายการเลือกเส้นทางแบบ static และ dynamic
การเลือกเส้นทางแบบ Static Routeการเลือกเส้นทางแบบ Static นี้ การกำหนดเส้นทางการคำนวณเส้นทางทั้งหมด กระทำโดยผู้บริหารจัดการเครือข่าย ค่าที่ถูกป้อนเข้าไปในตารางเลือกเส้นทางนี้มีค่าที่ตายตัว ดังนั้นการเปลี่ยนแปลงที่เกิดขึ้นใดๆ บนเครือข่าย จะต้องให้ผู้บริหารจัดการดูแล เครือข่าย เข้ามาจัดการทั้งสิ้นอย่างไรก็ดีการใช้ วิธีการทาง Static เช่นนี้ มีประโยชน์เหมาะสำหรับสภาพแวดล้อมดังนี้- เหมาะสาหรับเครือข่ายที่มีขนาดเล็ก- เพื่อผลแห่งการรักษาความปลอดภัยข้อมูล เนื่องจากสามารถแน่ใจว่า ข้อมูลข่าวสารจะต้องวิ่งไปบนเส้นทางที่กำหนดไว้ให้ ตายตัว- ไม่ต้องใช้ Software เลือกเส้นทางใดๆทั้งสิ้น- ช่วยประหยัดการใช้ แบนวิดท์ของเครือข่ายลงได้มาก เนื่องจากไม่มีปัญหาการ Broadcast หรือแลกเปลี่ยนข้อมูลระหว่าง Router ที่มาจากการใช้โปรโตคอลเลือกเส้นทางการเลือกเส้นทางแบบ Dynamic Routeการเลือกเส้นทางแบบ Dynamic นี้ เป็นการใช้ ซอฟต์แวร์ที่ติดตั้งมากับ Router เพื่อทำหน้าที่แลกเปลี่ยนข้อมูลข่าวสารที่เกี่ยวกับการเลือกเส้นทางระหว่าง Router โดยที่เราเรียกว่า โปรโตคอลเลือกเส้นทาง (Routing Protocol) ข้อดีของการใช้ Routing Protocol ได้แก่ การที่ Router สามารถใช้ Routing Protocol นี้เพื่อการสร้างตารางเลือกเส้นทางจากสภาวะของเครือข่ายในขณะนั้นประโยชน์ของการใช้ Routing Protocol มีดังนี้- เหมาะสาหรับเครือข่ายขนาดใหญ่- Router สามารถจัดการหาเส้นทางเองหากมีการเปลี่ยนแปลงของเครือข่ายเกิดขึ้นข้อแตกต่างระหว่าง Static Route กับ DynamicStatic Route- ไม่เพิ่มการทางานของ Router ในการ Update Routing Table ทาให้ Bandwidth ก็ไม่เพิ่มขึ้น- มีความปลอดภัยมากกว่า Dynamic Route เพราะ Dynamic Route เมื่อมีใครมาเชื่อมต่ออุปกรณ์ก็สามารถจะใช้งานได้เลย ไม่ตรงผ่านผู้ดูแลระบบ- Static Route จะใช้ในการสร้างเส้นทางสารองมากกว่าการสร้างเส้นทางหลักDynamic Route- ไม่ต้องทา Routing entry ทุก Subnet Address ที่ต้องการให้มองเห็น- สามารถตรวจสอบสถานะของ Link ได้ เช่น การ Down ลงไปของ Link
5. อธิบายการเลือกเส้นทางแบบ Link State และ Distance Vector
Link-state Routing Protocol ลักษณะกลไกการทำงานแบบ Link-state routing protocol คือตัว Router จะ Broadcast ข้อมูลการเชื่อมต่อของเครือข่ายตนเองไปให้ Router อื่นๆทราบ ข้อมูลนี้เรียกว่า Link-state ซึ่งเกิดจากการคำนวณ Router ที่จะคำนวณค่าในการเชื่อมต่อโดยพิจารณา Router ของตนเองเป็นหลักในการสร้าง routing table ขึ้นมา ดังนั้นข้อมูล Link-state ที่ส่งออกไปในเครือข่ายของแต่ละ Router จะเป็นข้อมูลที่บอกว่า Router นั้นๆมีการเชื่อมต่ออยู่กับเครือข่ายใดอย่างไร และเส้นทางการส่งที่ดีที่สุดของตนเองเป็นอย่างไร โดยไม่สนใจ Router อื่น และกรณีที่มีการเปลี่ยนแปลงภายในเครือข่าย เช่น มีบางวงจรเชื่อมโยงล่มไปที่จะมีการส่งข้อมูลเฉพาะที่มีการเปลี่ยนแปลงไปให้ ซึ่งมีขนาดไม่ใหญ่มากตัวอย่างโปรโตคอลที่ใช้กลไกแบบ Link-state ได้แก่ โปรโตคอล OSPF (Open Shortest Path First) สำหรับ Interior routing protocol นี้บางแห่งก็เรียกว่า Intradomain routing protocolDistance-vector Routing Protocol ลักษณะที่สำคัญของการติดต่อแบบ Distance-vector คือ ในแต่ละ Router จะมีข้อมูล routing table เอาไว้พิจารณาเส้นทางการส่งข้อมูล โดยพิจารณาจากระยะทางที่ข้อมูลจะไปถึงปลายทางเป็นหลัก ดังรูปจากรูป Router A จะทราบว่าถ้าต้องการส่งข้อมูลข้ามเครือข่ายไปยังเครื่องที่อยู่ใน Network B แล้วนั้น ข้อมูลจะข้าม Router ไป 1 ครั้ง หรือเรียกว่า 1 hop ในขณะที่ส่งข้อมูลไปยังเครื่องใน Network C ข้อมูลจะต้องข้ามเครือข่ายผ่าน Router A ไปยัง Router B เสียก่อน ทำให้การเดินทางของข้อมูลผ่านเป็น 2 hop อย่างไรก็ตามที่ Router B จะมองเห็น Network B และ Network C อยู่ห่างออกไปโดยการส่งข้อมูล 1 hop และ Network A เป็น2 hop ดังนั้น Router A และ Router B จะมองเห็นภาพของเครือข่ายที่เชื่อมต่ออยู่แตกต่างกันเป็นตารางข้อมูล routing table ของตนเอง จากรูปการส่งข้อมูลตามลักษณะของ Distance-vector routing protocol จะเลือกหาเส้นทางที่ดีที่สุดและมีการคำนวณตาม routing algorithm เพื่อให้ได้ผลลัพธ์ออกมา ซึ่งมักจะเลือกเส้นทางที่ดีที่สุดและมีจำนวน hop น้อยกว่า โดยอุปกรณ์ Router ที่เชื่อมต่อกันมักจะมีการปรับปรุงข้อมูลใน routing table อยู่เป็นระยะๆ ด้วยการ Broadcast ข้อมูลทั้งหมดใน routing table ไปในเครือข่ายตามระยะเวลาที่ตั้งเอาไว้ การใช้งานแบบ Distance-vector เหมาะกับเครือข่ายที่มีขนาดไม่ใหญ่มากและมีการเชื่อมต่อที่ไม่ซับซ้อนเกินไป ตัวอย่างโปรโตคอลที่ทำงานเป็นแบบ Distance-vector ได้แก่ โปรโตคอล RIP (Routing Information Protocol) และโปรโตคอล IGRP (Interior Gateway Routing Protocol) เป็นต้น
6. อธิบายการทำงานของ Routing Information Protocol (RIP)
Routing Information Protocol (RIP)เป็นโปรโตคอลเลือกเส้นทางประเภท Distance Vector ที่ถูกออกแบบมาให้ใช้กับเครือข่ายขนาด เล็กไปจนถึงขนาดกลาง เป็นโปรโตคอลเลือกเส้นทางมาตรฐานที่ไม่ขึ้นอยู่กับผู้ผลิตรายใด มี RIP Version 1 ที่ได้รับมาตรฐาน RFC 1058 เป็นโปรโตคอลที่เรียบง่าย อีกทั้งยังง่ายต่อการจัดตั้งคุณลักษณะการทำงานของ RIP- RIP อาศัย ค่าของจำนวน Hop เป็นหลัก เพื่อการเลือกเส้นทาง โดยจำกัดที่ไม่เกิน 15 Hop- RIP จะส่งข่าวสารเกี่ยวกับการปรับปรุงเส้นทางออกไปทุก 30 วินาที- การส่งข่าวสารเกี่ยวกับการปรับปรุงตารางเส้นทาง เป็นการส่งออกไปทั้งหมดของตารางทั้งที่เป็นของเก่าและของใหม่- การส่งข่าวสารเกี่ยวกับการปรับปรุงเส้นทาง จะเกิดขึ้นกับ Router ที่เชื่อมต่อกันโดยตรงเท่านั้น
7. อธิบายหลักการทำงานของ Open Shortest Path First (OSPE)
ระบบ OSPF จะแบ่งเราเตอร์ออกเป็นเขตย่อยๆ หรือพื้นที่ย่อยๆ ที่มีความสำพันธ์กันหรือใช้โพรโตคอลที่ใช้ ในการติดต่อต่างกันและจะเลือกเราเตอร์ขึ้นมาอย่างน้อยหนึ่งตัวที่ใช้ติดต่อระหว่างแต่ละพื้นที่ เรียกว่า เราเตอร์ตัวแทนหรือเราเตอร์ชายแดนและจะมีพื้นที่พิเศษในระบบออโตโนมัสซึ่งทำหน้าที่เป็นเสมือนศูนย์กลางของระบบ เรียกว่า Backbone พื้นที่อื่นๆจะต้องมีจุดเชื่อมต่อเข้ากับ Backbone เสมอ และ backbone จะมีหมายเลขพื้นที่เท่ากับ 0 เสมอ การหาระยะทางของเราเตอร์จะส่งแพ็กเก็ตที่เรียกว่า Hello Packet ไปยังเราเตอร์อื่นๆแบบ Floding เมื่อเราเตอร์อื่นได้รับจะต้องตอบกลับแพ็กเก็ตทันทีและแต่ละเราเตอร์ก็จะสร้างตารางระยะทางไปยังเราเตอร์อื่นๆจากข้อมูลที่ได้รับ โดยใช้เราเตอร์ของตัวเองเป็นรากหรืออาจจะคำนวณระยะทางระหว่างเราเตอร์โดยมี ค่าน้ำหนัก ที่คำนวณได้มาจากระยะทาง เวลาการรอคอย และองค์ประกอบอื่นๆที่ต้องการ โดยการพิจารณาการรอคอยนั้นจะมีการส่งแพ็กเก็ตพิเศษ (Echo Packet) ที่กำหนดให้เราเตอร์ที่ได้รับต้องส่งนี้กลับทันทีทำให้ทราบเวลาการรอคอยที่แน่ชัด และคำนวณหาระยะทางที่สั้นที่สุด ในการติดต่อระหว่างพื้นที่อื่นๆจะมีตัวแทนจะเป็นตัวติดต่อและจะมีการแลกเปลี่ยนข้อมูลการติดต่อสื่อสารกันตลอดเวลาที่กำหนดไม่ว่าจะเป็นการติดต่อระหว่างพื้นที่หรือนอกพื้นที่

วันเสาร์ที่ 8 สิงหาคม พ.ศ. 2552

บริดจ์ (Bridge) เราเตอร์ (Router) และสวิตช์ (Switch)




เมื่อต้องการเชื่อมเครือข่ายย่อย ๆ หลาย เครือข่ายเข้าด้วยกัน จำเป็นต้องมีอุปกรณ์ประกอบที่ทำให้การรับส่งข้อมูลข่าวสารต่าง ๆ เชื่อมโยงถึง โดยทั่วไปเรามักใช้ระบบ การรับส่งข้อมูลเป็นชุดเล็ก ๆ ที่เรียกว่า "แพ็กเก็ต" (Packet) ข้อมูลเป็นแพ็กเก็ต สามารถเคลื่อนที่จากต้นทางไปยังปลายทางได้ โดยผ่านอุปกรณ์เลือกเส้นทาง การเลือกเส้นทางสามารถเลือกผ่านทั้งทางด้านเครือข่าย LAN และ WAN โดยปกติมีการกำหนดแอดเดรสของตัวรับและตัวส่ง ดังนั้น จึงต้องมีแอดเดรสปรากฎอยู่ในแพ็คเก็ต อุปกรณ์ที่เชื่อมต่อในเครือข่ายทุกหน่วยจึงมีแอดเดรสกำกับแอดเดรสหรือตำแหน่งที่อยู่มีรูปแบบที่ชัดเจน ได้รับการกำหนดเป็นมาตรฐาน เช่น แอดเดรสที่ใช้ในเครือข่ายอินเทอร์เน็ต ใช้รหัสตัวเลข 32 บิต ที่เรียกว่า "ไอพีแอดเดรส" (IP Address) แพ็กเก็ตข้อมูลทุกแพ็กเก็ตจึงมีข้อมูลที่บ่งบอกว่าเป็นข้อมูลที่ส่งมาจากที่ใด และ ปลายทางอยู่ที่ใด การเลือกเส้นทาง..จึงขึ้นอยู่กับแอดเดรสที่กำหนดในแพ็กเก็ต เมื่อแพ็กเก็ตข้อมูลผ่านมายังอุปกรณ์ต่าง ๆ อุปกรณ์เหล่านั้นจะตรวจสอบดูว่า แอดเดรสต้นทางและ ปลายทางอยู่ที่ใด จะส่งผ่านแพ็กเก็ตนั้นไปยังเส้นทางใด เพื่อให้ถึงจุดหมายตามต้องการ
อุปกรณ์ที่ใช้ในการเชื่อมโยงเครือข่าย และทำหน้าที่ในการรับส่งข้อมูลระหว่างเครือข่ายมีหลายประเภทด้วยกัน อุปกรณ์แต่ละชนิดมีขีดความสามารถแตกต่างกันออกไป อุปกรณ์ที่นิยมใช้ในการเชื่อมโยงเครือข่ายหลักทั้ง LAN และ WAN ประกอบด้วย บริดจ์ (Bridge) เราเตอร์ (Router) และสวิตช์ (Switch)

บริดจ์ (Bridge)
บริดจ์ เป็นอุปกรณ์เชื่อมโยงเครือข่ายของเครือข่ายที่แยกจากกัน แต่เดิมบริดจ์ได้รับการออกแบบมาให้ใช้กับเครือข่ายประเภทเดียวกัน เช่น ใช้เชื่อมโยงระหว่างอีเทอร์เน็ตกับ อีเทอร์เน็ต (Ethernet) บริดจ์มีใช้มานานแล้ว ตั้งแต่ปี ค.ศ. 1980 บริดจ์จึงเป็นเสมือนสะพานเชื่อมระหว่างสองเครือข่าย การติดต่อภายในเครือข่ายเดียวกันมีลักษณะการส่ง ข้อมูลแบบกระจาย (Broadcasting) ดังนั้น จึงกระจายได้เฉพาะเครือข่ายเดียวกันเท่านั้น การรับส่งภายในเครือข่ายมีข้อกำหนดให้แพ็กเก็ตที่ส่งกระจายไปยังตัวรับได้ทุกตัว แต่ถ้ามีการส่งมาที่แอดเดรสต่างเครือข่าย บริดจ์จะนำข้อมูลเฉพาะแพ็กเก็ตนั้นส่งให้ บริดจ์จึงเป็นเสมือนตัวแบ่งแยกข้อมูล ระหว่างเครือข่ายให้มีการสื่อสารภายในเครือข่าย ของตน ไม่ปะปนไปยังอีกเครือข่ายหนึ่ง เพื่อลดปัญหาปริมาณข้อมูลกระจายในสายสื่อสารมากเกินไป ในระยะหลังมีผู้พัฒนาบริดจ์ให้เชื่อมโยงเครือข่ายต่างชนิดกันได้ เช่น อีเทอร์เน็ตกับโทเก็นริง เป็นต้น หากมีการเชื่อมต่อเครือข่ายมากกว่าสองเครือข่ายเข้าด้วยกัน และเครือข่ายที่เชื่อมมีลักษณะหลากหลาย ซึ่งเป็นทั้งเครือข่ายแบบ LAN และ WAN อุปกรณ์ที่นิยมใช้ในการเชื่อมโยงคือ เราเตอร์ (Router)

เราเตอร์ (Router)
เราเตอร์จะรับข้อมูลเป็นแพ็กเก็ตเข้ามาตรวจสอบแอดเดรสปลายทาง จากนั้นนำมาเปรียบเทียบกับตารางเส้นทางที่ได้รับการโปรแกรมไว้ เพื่อหาเส้นทางที่ส่งต่อ หากเส้นทาง ที่ส่งมาจากอีเทอร์เน็ต และส่งต่อออกช่องทางของ Port WAN ที่เป็นแบบจุดไปจุด ก็จะมีการปรับปรุงรูปแบบสัญญาณให้เข้ากับมาตรฐานใหม่ เพื่อส่งไปยังเครือข่าย WAN ได้
ปัจจุบันอุปกรณ์เราเตอร์ได้รับการพัฒนาไปมากทำให้การใช้งานเราเตอร์มีประสิทธิภาพ โดยเฉพาะเมื่อเชื่อมอุปกรณ์เราเตอร์หลาย ๆ ตัวเข้าด้วยกันเป็นเครือข่ายขนาดใหญ่ เราเตอร์สามารถทำงานอย่างมีประสิทธิภาพ โดยการหาเส้นทางเดินที่สั้นที่สุด เลือกตามความเหมาะสมและแก้ปัญหาที่เกิดขึ้นเองได้
เมื่อเทคโนโลยีทางด้านอิเล็กทรอนิกส์ได้รับการพัฒนาให้มีขีดความสามารถในการทำงานได้เร็วขึ้น จึงมีผู้พัฒนาอุปกรณ์ที่ทำหน้าที่คัดแยกแพ็กเก็ต หรือเรียกว่า "สวิตช์แพ็กเก็ต ข้อมูล" (Data Switched Packet) โดยลดระยะเวลาการตรวจสอบแอดเดรสลงไป การคัดแยกจะกระทำในระดับวงจรอิเล็กทรอนิกส์ เพื่อให้การทำงานมีประสิทธิภาพ เชิงความเร็วและความแม่นยำสูงสุด อุปกรณ์สวิตช์ข้อมูลจึงมีเวลาหน่วงภายในตัวสวิตช์ต่ำมาก จึงสามารถนำมาประยุกต์กับงานที่ต้องการเวลาจริง เช่น การส่งสัญญาณเสียง วิดีโอ ได้ดี
สวิตช์ (Switch)
อุปกรณ์สวิตช์มีหลายแบบ หากแบ่งกลุ่มข้อมูลเป็นแพ็กเก็ตเล็ก ๆ และเรียกใหม่ว่า "เซล" (Cell) กลายเป็น "เซลสวิตช์" (Cell Switch) หรือที่รู้จักกันในนาม "เอทีเอ็มสวิตช์" (ATM Switch) ถ้าสวิตช์ข้อมูลในระดับเฟรมของอีเทอร์เน็ต ก็เรียกว่า "อีเทอร์เน็ตสวิตช์" (Ethernet Switch) และถ้าสวิตช์ตามมาตรฐานเฟรมข้อมูลที่เป็นกลาง และ สามารถนำข้อมูลอื่นมาประกอบภายในได้ก็เรียกว่า "เฟรมรีเลย์" (Frame Relay)
อุปกรณ์สวิตชิ่งจึงเป็นอุปกรณ์ที่ใช้เทคโนโลยีใหม่ และมีแนวโน้มที่จะพัฒนาให้ใช้กับความเร็วของการรับส่งข้อมูลจำนวนมาก เช่น เฟรมรีเลย์ (Frame Relay) และเอทีเอ็ม สวิตช์ (ATM Switch) สามารถสวิตช์ข้อมูลขนาดหลายร้อยล้านบิตต่อวินาทีได้ เทคโนโลยีนี้จึงเป็นเทคโนโลยีที่กำลังได้รับความนิยม
การออกแบบและจัดรูปแบบเครือข่ายองค์กรที่เป็น "อินทราเน็ต" ซึ่งเชื่อมโยงได้ทั้งระบบ LAN และ WAN จึงต้องอาศัยอุปกรณ์เชื่อมโยงต่าง ๆ เหล่านี้ อุปกรณ์เชื่อมโยง ทั้งหมดนี้รองรับมาตรฐานการเชื่อมต่อได้หลากหลายรูปแบบ เช่น จากเครือข่ายพื้นฐานเป็นอีเทอร์เน็ต ก็สามารถเชื่อมเข้าสู่ ATM Switch, Frame Relay, or Bridge, Router ได้ ทำให้ขนาดของเครือข่ายมีขนาดใหญ่ขึ้น

เกตเวย์ (Gateway)


เกตเวย์เป็นอุปกรณ์ฮาร์ดแวร์ที่เชื่อมต่อเครือข่ายต่างประเภทเข้าด้วยกัน เช่น การใช้เกตเวย์ในการเชื่อมต่อเครือข่าย ที่เป็นคอมพิวเตอร์ประเภทพีซี (PC) เข้ากับคอมพิวเตอร์ประเภทแมคอินทอช (MAC) เป็นต้น

เราท์เตอร์

เราท์เตอร์ เป็นอุปกรณ์ที่ทำหน้าที่เชื่อมต่อระบบเครือข่ายหลายระบบเข้าด้วยกัน คล้ายกับบริดจ์ แต่มีส่วนการ ทำงานที่ซับซ้อนมากกว่าบริดจ์มาก โดยเราท์เตอร์จะมีเส้นทางการเชื่อมโยงระหว่าง แต่ละเครือข่ายเก็บไว้เป็นตารางเส้นทาง เรียกว่า Routing Table ทำให้เราท์เตอร์สามารถทำหน้าที่จัดหาเส้นทางและเลือกเส้นทางที่เหมาะสมที่สุดในการเดินทาง เพื่อการติดต่อระหว่างเครือข่ายได้อย่างมีประสิทธิภาพ

การคอนฟิกเราเตอร์ Cisco ขั้นพื้นฐาน


การเชื่อมต่อแบบ Point to Point โดยมีจำนวน Site เป็น 2 sites ทำ Routing เป็นแบบ Static และ encapsulation เป็น pppสมมุติว่าเรามีจำนวน site เป็น 2 site และมีการเชื่อมต่อดังรูปที่ 1 โดยกำหนดค่า ip เป็นดังนี้
-Wan IP : เป็น 192.168.0.0/30 นั่นคือจะมี ip ในกลุ่มนี้ทั้งหมดเป็น 4 ip คือ 192.168.0.0 - 192.168.0.3 แต่ไอพี 192.168.0.0 เป็น network ip และ ไอพี 192.168.0.3 เป็น broadcast ip ซึ่งนำมาใช้งานปกติไม่ได้ จึงเหลือไอพีที่ใช้งานทั่วไปได้ 2 ip คือ 192.168.0.1 ซึ่งกำหนดให้เป็นไอพีของ serial port (s0) ของ router A และอีกไอพีคือ 192.168.0.2 ซึ่งกำหนดให้เป็นไอพีของ serial port (s0) ของ router B ดังรูปที่ 1
-Lan IP ด้าน A : ในที่นี้กำหนดเป็น 192.168.11.0/24 นั่นคือจะมีไอพีใช้งานเป็นหนึ่ง class c คือ 254 ip (ไม่นับ network ip และ broadcast ip) คือ 192.168.11.1 - 192.168.11.254 โดยในที่นี้กำหนดให้ไอพี 192.168.11.1 เป็นไอพีของ ethernet port (e0) ของ router A และไอพีสำหรับเครื่องพีซีกำหนดให้ใช้ตั้งแต่ 192.168.11.11 เป็นต้นไป ดังรูปที่ 1
-Lan IP ด้าน B : ในที่นี้กำหนดเป็น 192.168.12.0/24 นั่นคือจะมีไอพีใช้งานเป็นหนึ่ง class c เช่นกัน คือ 254 ip (ไม่นับ network ip และ broadcast ip) คือ 192.168.12.1 - 192.168.12.254 โดยในที่นี้กำหนดให้ไอพี 192.168.12.1 เป็นไอพีของ ethernet port (e0) ของ router B และไอพีสำหรับเครื่องพีซีกำหนดให้ใช้ตั้งแต่ 192.168.12.11 เป็นต้นไป ดังรูปที่ 1